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Outline for Today

● What is a Function?
● It’s more nuanced than you might expect.

● Domains and Codomains
● Where functions start, and where functions end.

● Defining a Function
● Expressing transformations compactly.

● Special Classes of Functions
● Useful types of functions you’ll encounter IRL.

● Proofs on First-Order Definitions
● A key skill.



  

What is a function?



  

Functions, High-School Edition



  

f(x) = x4 – 5x2 + 4

source: https://saylordotorg.github.io/text_intermediate-algebra/section_07/6aaf3a5ab540885474d58855068b64ce.png



  

source: http://study.com/cimages/multimages/16/asymptote_1.JPG



  

Functions, High-School Edition

● In high school, functions are usually given as 
objects of the form

 

● What does a function do?
● It takes in as input a real number.
● It outputs a real number
● … except when there are vertical asymptotes or 

other discontinuities, in which case the function 
doesn't output anything.

f (x) =
x3

+3x2
+15x+7

1−x137



  

Functions, CS Edition



  

  int flipUntil(int n) {
    int numHeads = 0;
    int numTries = 0;
         
    while (numHeads < n) 
{
      if 
(randomBoolean()) {
        numHeads++;
      }
      numTries++;
    }
         
    return numTries;
  }



  

Functions, CS Edition

● In programming, functions
● might take in inputs,
● might return values,
● might have side effects,
● might never return anything,
● might crash, and
● might return different values when called 

multiple times.



  

What's Common?

● Although high-school math functions and 
CS functions are pretty different, they 
have two key aspects in common:
● They take in inputs.
● They produce outputs.

● In math, we like to keep things easy, so 
that's pretty much how we're going to 
define a function.



  

High-Level Intuition:

A function is an object f that takes in 
exactly one input x and produces exactly 

one output f(x).

(This is not definition. It’s just to
help you build and intuition.)

fx

 

f(x)
 
 



  

High School versus CS Functions

● In high school, functions usually were given by a rule:

f(x) = 4x + 15 
● In CS, functions are usually given by code:

             int factorial(int n) {
                 int result = 1;
                 for (int i = 1; i <= n; i++) {
                     result *= i;
                 }
                 return result;

             }

● What sorts of functions are we going to allow from a 
mathematical perspective?



  

Dikdik
Nubian

Ibex
Sloth



  



  

… but also …



  

f(x) = x2 + 3x – 15



  

In mathematics, functions are deterministic.
 

That is, given the same input, a function must 
always produce the same output.

The following is a perfectly valid piece of
C++ code, but it’s not a valid function under 

our definition:
 

int randomNumber(int numOutcomes) {
    return rand() % numOutcomes;   
}                                  



  

One Challenge



  

f(x) = x2 + 2x + 5

   f( 3 ) = 32 + 3 · 2 + 5 = 20
   f( 0 ) = 02 + 0 · 2 + 5 = 5

   f( 3 ) = … ?
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f(      ) = 

f(      ) = 137 …?



  

We need to make sure we can't apply 
functions to meaningless inputs.



  

Domains and Codomains

● Every function f has two sets associated with it: its 
domain and its codomain.

● A function f can only be applied to elements of its 
domain. For any x in the domain, f(x) belongs to the 
codomain.

Domain Codomain

The function 
must be defined 

for every element 
of the domain.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

must be 
produced as 

outputs.



  

Domains and Codomains

● Every function f has two sets associated with it: its 
domain and its codomain.

● A function f can only be applied to elements of its 
domain. For any x in the domain, f(x) belongs to the 
codomain.

double absoluteValueOf(double 
x) {
    if (x >= 0) {
        return x;
    } else {
        return -x;
    }
}

The domain of this function 
is ℝ. Any real number can be 

provided as input.

The codomain of this function is 
ℝ. Everything produced is a real 
number, but not all real numbers 

can be produced.



  

Domains and Codomains

● If f is a function whose domain is A and whose 
codomain is B, we write f : A → B.

● Think of this like a “function prototype” in C++.

f : A → B

Argument
type

Return
type

Function
name

B f(A arg);

Argument
type

Return
type

Function
name



  

Domains and Codomains

● If f is a function whose domain is A and whose 
codomain is B, we write f : A → B.

● Think of this like a “function prototype” in C++.

f : A → B

Domain Codomain

Function
name

B f(A arg);

DomainCodomain

Function
name



  

The Official Rules for Functions

● Formally speaking, we say that f : A → B if the following 
two rules hold.

● First, f must be obey its domain/codomain rules:

∀a ∈ A. ∃b ∈ B. f(a) = b
(“Every input in A maps to some output in B.”)

● Second, f must be deterministic:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ = a₂ → f(a₁) = f(a₂))
(“Equal inputs produce equal outputs.”)

● If you’re ever curious about whether something is a 
function, look back at these rules and check! For example:
● Can a function have an empty domain?
● Can a function have an empty codomain?



  

Defining Functions



  

Defining Functions

● To define a function, you need to
● specify the domain,
● specify the codomain, and
● give a rule used to evaluate the function.

● All three pieces are necessary.
● We need to domain to know what the function can be 

applied to.
● We need to codomain to know what the output space is.
● We need the rule to be able to evaluate the function.

● There are many ways to do this. Let’s go over a few 
examples.



  

White-Tailed
Kite

Anna’s
Hummingbird

Functions can be defined as a picture.
Draw the domain and codomain explicitly.

Then, add arrows to show the outputs.

Red-Shouldered
Hawk



  

f : ℤ → ℤ, where
 

f(x) = x2 + 3x – 15

Functions can be defined as a rule.
Be sure to explicitly state what the

domain and codomain are!



  

Some rules are given piecewise. We select which
rule to apply based on the conditions on the right.

(Just make sure at least one condition applies and that
all applicable conditions give the same result!)

f (n)={ n if n≥0
−n if n≤0

f : ℤ → ℕ, where



  

Some Nuances



  

A B

Stanford

Berkeley

Michigan

Arkansas

Cardinal

White

Blue

Gold

Is this a function from A to B?



  

California

New York

Vermont

Washington 
DC

Sacramento

Montpelier

Albany

A B

Is this a function from A to B?



  

عيد الفطر

عيد الأضحى

صَفَر

م مُحَرََّ

رَبيع الأوَّل

A

B

جُمادى الأولى

رَبيع الثاني

جُمادى الآخرة

شَعْبان

رَجَب

رَمَضا
ن

ذو القعدة

شوَّال

ذو الحجة

Is this a function from A to B?

Respond at 
pollev.com/zhenglian740



  

Special Types of Functions



  



  



  

Undoing by Doing Again

● Some operations invert themselves. For example:
● Flipping a switch twice is the same as not flipping it at all.
● In first-order logic, ¬¬A is equivalent to A.
● In algebra, -(-x) = x.
● In set theory, (A Δ B) Δ B = A. (Yes, really!)

● Operations with these properties are surprisingly 
useful in CS theory and come up in a bunch of 
contexts.
● Storing compressed approximations of sets (XOR filters).
● Theoretically unbreakable encryption (one-time pads).
● Transmitting a large file to multiple receivers (fountain 

codes).



  

Involutions

● A function f : A → A from a set back to itself is 
called an involution if the following first-
order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.
(“Applying f twice is equivalent to not 

applying f at all.”)
● Involutions have lots of interesting properties. 

Let’s explore them and see what we can find.



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x.
● f : ℤ → ℤ defined as f(x) = -x.
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd
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Involutions, Visually

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

꩜

+

☞

≈

⬠

꩜

+

☞

≈

⬠



  

Involutions, Visually

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

꩜

+

☞

≈

⬠



  

Proofs on Involutions



  

Theorem: The function f : ℤ → ℤ defined as

   
is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we 
need to show. ■

f (n) = {n+1 if n  is even
n−1 if n  is odd
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What does it mean for f to be an involution?

∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader pick some n 
∈ ℕ, then argue that f(f(n)) = n.
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This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,

just as usual.



  



  

To prove that
this is true…



  

To prove that
this is true…

∀x. A
Have the reader pick an

arbitrary x. We then prove A is
true for that choice of x.



  

Time-Out for Announcements!



  

Problem Set

● Problem Set 1 solutions are up on the 
course website – please take a look at 
them as soon as possible. 

● TAs are working hard on grading your 
assignments. We’re aiming to have those 
returned to you by Wednesday morning. 



  

Back to CS103!



  

Another Class of Functions
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Injective Functions

● A function f : A → B is called injective (or one-to-one) if 
the following statement is true about f:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different.”)

● The following first-order definition is equivalent (why?) 
and is often useful in proofs.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

● A function with this property is called an injection.

● How does this compare to our second rule for functions?



  

Injections

● Let 🧑🤝🧑👫👫👫👫be the set of all CS103 students. 
Which of the following are injective?

1) f : 👫→ ℕ where f(x) is x’s Stanford ID number.

2) f : 🧑🤝 →👫  🌎, where 🌎is the set of all countries 
and f(x) is x’s country of birth.

3) f : 🧑🤝 →👫  💬, where 💬is the set of all given (first) 
names, where f(x) is x’s given (first) name.

A function f : A → B is injective if either statement is true:
  

∀x₁ ∈ A. ∀x₂ ∈ A. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∀x₁ ∈ A. ∀x₂ ∈ A. (f(x₁) = f(x₂) → x₁ = x₂)

Respond at 
pollev.com/zhenglian740
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✔
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Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■ 
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What does it mean for the function f to be injective?
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∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( n₀ ≠ n₁ → f(n₀) ≠ f(n₁) )

Therefore, we'll pick arbitrary n₀, n₁ ∈ ℕ where f(n₀) = 
f(n₁), then prove that n₀ = n₁.
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Good exercise: Repeat this proof 
using the other definition of injectivity!



  

Injective Functions
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This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.



  

To prove that
this is true…

∀x. A
Have the reader pick an

arbitrary x. We then prove A is
true for that choice of x.



  

To prove that
this is true…

∀x. A

A → B

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Assume A is true, then
prove B is true.



  

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).

Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■     
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What is the negation of this statement?
  

¬∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
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Therefore, we need to find x₁, x₂ ∈ ℤ such that x₁ ≠ x₂, but f(x₁) = f(x₂). Can we do that?
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This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.



  

To prove that
this is true…

∀x. A

A → B

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Assume A is true, then
prove B is true.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Simplify the negation, then
consult this table on the result.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.



  

Another Class of Functions
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Surjective Functions

● A function f : A → B is called surjective (or 
onto) if this first-order logic statement is true 
about f:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's an
input that produces it.”)

● A function with this property is called a 
surjection.

● How does this compare to our first rule of 
functions?



  

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.

So f(x) = y, as required. ■
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What does it mean for f to be surjective?

∀y ∈ ℝ. ∃x ∈ ℝ. f(x) = y

Therefore, we'll choose an arbitrary y ∈ ℝ, then prove 
that there is some x ∈ ℝ where f(x) = y.
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Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = y / 2. Then we see that
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So f(x) = y, as required. ■

This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.



  

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: We will show there is a natural number n such that
g(m) ≠ n for any m ∈ ℕ.

Let n = 137. We must show that g(m) ≠ 137 for any 
m ∈ ℕ. To see this, consider some m ∈ ℕ. Then we see 
that g(m) = 2m is even, while 137 is odd. Therefore, we 
have g(m) ≠ 137, as required. ■

Question: What do we need to do to prove that g is 
not surjective? Try taking the definition of 

surjectivity and then negating it.

Respond at pollev.com/zhenglian740
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What does it mean for g to be surjective?

∀n ∈ ℕ. ∃m ∈ ℕ. g(m) = n
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Proof: We will show there is a natural number n such that
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Therefore, we need to find a natural number n where, regardless of which 
m we pick, we have g(m) ≠ n.



  

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m ∈ ℕ. We
need to show that g(m) ≠ n.

Notice that g(m) = 2m is even, while 137 is odd. 
Therefore, we have g(m) ≠ 137, as required. ■
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need to show that g(m) ≠ n.
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Therefore, we have g(m) ≠ 137, as required. ■Our overall goal is to prove

 

∃n ∈ ℕ. ∀m ∈ ℕ. g(m) ≠ n.
 

We just made our choice of n. Therefore, we 
need to prove

 

∀m ∈ ℕ. g(m) ≠ n.
 

We’ll therefore pick an arbitrary m ∈ ℕ, then 
prove that g(m) ≠ n.
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This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.



  

A Proof About Birds



  

Theorem: If all birds can fly,
then all herons can fly.
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can fly.

 Given the predicates

Bird(b), which says b is a bird;
Heron(h), which says h is a heron; and
CanFly(x), which says x can fly,

 translate the theorem into first-order logic.
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To prove that
this is true…

∀x. A

∃x. A

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

A → B Assume A is true, then
prove B is true.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))
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Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.
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Which makes more sense as the 
next step in this proof?

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.
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Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary citril c. We will show 
that c can fly. To do so, note that since c is 
a citril we know c is a bird. Therefore, by 
our earlier assumption, c can fly. ■
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 show that all herons can fly.

Consider an arbitrary heron h. We will 
show that h can fly. To do so, note that 
since h is a heron we know h is a bird. 
Therefore, by our earlier assumption, h 
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We never introduce a 
variable b.

We introduce a variable h 
almost immediately.
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We never introduce a 
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● In the context of a proof, you will need to 
assume some statements and prove others.
● Here, we assumed all birds can fly.
● Here, we proved all herons can fly.

● Statements behave differently based on 
whether you’re assuming or proving them.



  

We never introduce a 
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● To prove the universally-quantified statement

∀x. P(x)

we introduce a new variable x representing some 
arbitrarily-chosen value.

● Then, we prove that P(x) is true for that variable x.
● That’s why we introduced a variable h in this proof 

representing a heron.



  

We never introduce a 
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● If we assume the statement

∀x. P(x)

we do not introduce a variable x.
● Rather, if we find a relevant value z somewhere else in 

the proof, we can conclude that P(z) is true.
● That’s why we didn’t introduce a variable b in our 

proof, and why we concluded that h, our heron, can fly.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.
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Either prove ¬A → B or
prove ¬B → A.
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Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.



  

To prove that
this is true…

If you assume
this is true…

∀x. A

∃x. A
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A ↔ B
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Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Initially, do nothing. Once you
find a z through other means,

you can state it has property A.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Introduce a variable
x into your proof that

has property A.

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Prove A. Then prove B. Assume A. Then assume B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
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To prove that
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If you assume
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Initially, do nothing. Once you
find a z through other means,

you can state it has property A.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Introduce a variable
x into your proof that

has property A.

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Prove A. Then prove B. Assume A. Then assume B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Prove A → B and B → A. Assume A → B and B → A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.



  

Recap from Today

● A function takes in an element of a 
domain and maps it to an element of a 
codomain. Functions must be 
deterministic.

● Definitions are often given in first-order 
logic, and the structure of a first-order logic 
statement dictates the structure of a proof.

● Involutions, injections, and surjections 
are specific classes of functions that have 
nice properties.



  

Next Time

● Connecting Function Types
● Involutions, injections, and surjections are 

related to one another. How?
● Function Composition

● Sequencing functions together.
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