

Functions

Outline for Today

● What is a Function?
● It’s more nuanced than you might expect.

● Domains and Codomains
● Where functions start, and where functions end.

● Defining a Function
● Expressing transformations compactly.

● Special Classes of Functions
● Useful types of functions you’ll encounter IRL.

● Proofs on First-Order Definitions
● A key skill.

What is a function?

Functions, High-School Edition

f(x) = x4 – 5x2 + 4

source: https://saylordotorg.github.io/text_intermediate-algebra/section_07/6aaf3a5ab540885474d58855068b64ce.png

source: http://study.com/cimages/multimages/16/asymptote_1.JPG

Functions, High-School Edition

● In high school, functions are usually given as
objects of the form

● What does a function do?
● It takes in as input a real number.
● It outputs a real number
● … except when there are vertical asymptotes or

other discontinuities, in which case the function
doesn't output anything.

f (x) =
x3

+3x2
+15x+7

1−x137

Functions, CS Edition

 int flipUntil(int n) {
 int numHeads = 0;
 int numTries = 0;

 while (numHeads < n)
{
 if
(randomBoolean()) {
 numHeads++;
 }
 numTries++;
 }

 return numTries;
 }

Functions, CS Edition

● In programming, functions
● might take in inputs,
● might return values,
● might have side effects,
● might never return anything,
● might crash, and
● might return different values when called

multiple times.

What's Common?

● Although high-school math functions and
CS functions are pretty different, they
have two key aspects in common:
● They take in inputs.
● They produce outputs.

● In math, we like to keep things easy, so
that's pretty much how we're going to
define a function.

High-Level Intuition:

A function is an object f that takes in
exactly one input x and produces exactly

one output f(x).

(This is not definition. It’s just to
help you build and intuition.)

fx

f(x)

High School versus CS Functions

● In high school, functions usually were given by a rule:

f(x) = 4x + 15
● In CS, functions are usually given by code:

 int factorial(int n) {
 int result = 1;
 for (int i = 1; i <= n; i++) {
 result *= i;
 }
 return result;

 }

● What sorts of functions are we going to allow from a
mathematical perspective?

Dikdik
Nubian

Ibex
Sloth

… but also …

f(x) = x2 + 3x – 15

In mathematics, functions are deterministic.

That is, given the same input, a function must
always produce the same output.

The following is a perfectly valid piece of
C++ code, but it’s not a valid function under

our definition:

int randomNumber(int numOutcomes) {
 return rand() % numOutcomes;
}

One Challenge

f(x) = x2 + 2x + 5

 f(3) = 32 + 3 · 2 + 5 = 20
 f(0) = 02 + 0 · 2 + 5 = 5

 f(3) = … ?

f(x) = x2 + 2x + 5

 f(3) = 32 + 3 · 2 + 5 = 20
 f(0) = 02 + 0 · 2 + 5 = 5

 f(3) = … ?

f(x) = x2 + 2x + 5

 f(3) = 32 + 3 · 2 + 5 = 20
 f(0) = 02 + 0 · 2 + 5 = 5

 f(3) = … ?

f(x) = x2 + 2x + 5

 f(3) = 32 + 3 · 2 + 5 = 20
 f(0) = 02 + 0 · 2 + 5 = 5

 f(3) = … ?

f() =

f() = 137 …?

We need to make sure we can't apply
functions to meaningless inputs.

Domains and Codomains

● Every function f has two sets associated with it: its
domain and its codomain.

● A function f can only be applied to elements of its
domain. For any x in the domain, f(x) belongs to the
codomain.

Domain Codomain

The function
must be defined

for every element
of the domain.

The output of the
function must

always be in the
codomain, but

not all elements
of the codomain

must be
produced as

outputs.

Domains and Codomains

● Every function f has two sets associated with it: its
domain and its codomain.

● A function f can only be applied to elements of its
domain. For any x in the domain, f(x) belongs to the
codomain.

double absoluteValueOf(double
x) {
 if (x >= 0) {
 return x;
 } else {
 return -x;
 }
}

The domain of this function
is ℝ. Any real number can be

provided as input.

The codomain of this function is
ℝ. Everything produced is a real
number, but not all real numbers

can be produced.

Domains and Codomains

● If f is a function whose domain is A and whose
codomain is B, we write f : A → B.

● Think of this like a “function prototype” in C++.

f : A → B

Argument
type

Return
type

Function
name

B f(A arg);

Argument
type

Return
type

Function
name

Domains and Codomains

● If f is a function whose domain is A and whose
codomain is B, we write f : A → B.

● Think of this like a “function prototype” in C++.

f : A → B

Domain Codomain

Function
name

B f(A arg);

DomainCodomain

Function
name

The Official Rules for Functions

● Formally speaking, we say that f : A → B if the following
two rules hold.

● First, f must be obey its domain/codomain rules:

∀a ∈ A. ∃b ∈ B. f(a) = b
(“Every input in A maps to some output in B.”)

● Second, f must be deterministic:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ = a₂ → f(a₁) = f(a₂))
(“Equal inputs produce equal outputs.”)

● If you’re ever curious about whether something is a
function, look back at these rules and check! For example:
● Can a function have an empty domain?
● Can a function have an empty codomain?

Defining Functions

Defining Functions

● To define a function, you need to
● specify the domain,
● specify the codomain, and
● give a rule used to evaluate the function.

● All three pieces are necessary.
● We need to domain to know what the function can be

applied to.
● We need to codomain to know what the output space is.
● We need the rule to be able to evaluate the function.

● There are many ways to do this. Let’s go over a few
examples.

White-Tailed
Kite

Anna’s
Hummingbird

Functions can be defined as a picture.
Draw the domain and codomain explicitly.

Then, add arrows to show the outputs.

Red-Shouldered
Hawk

f : ℤ → ℤ, where

f(x) = x2 + 3x – 15

Functions can be defined as a rule.
Be sure to explicitly state what the

domain and codomain are!

Some rules are given piecewise. We select which
rule to apply based on the conditions on the right.

(Just make sure at least one condition applies and that
all applicable conditions give the same result!)

f (n)={ n if n≥0
−n if n≤0

f : ℤ → ℕ, where

Some Nuances

A B

Stanford

Berkeley

Michigan

Arkansas

Cardinal

White

Blue

Gold

Is this a function from A to B?

California

New York

Vermont

Washington
DC

Sacramento

Montpelier

Albany

A B

Is this a function from A to B?

عيد الفطر

عيد الأضحى

صَفَر

م مُحَرََّ

رَبيع الأوَّل

A

B

جُمادى الأولى

رَبيع الثاني

جُمادى الآخرة

شَعْبان

رَجَب

رَمَضا
ن

ذو القعدة

شوَّال

ذو الحجة

Is this a function from A to B?

Respond at
pollev.com/zhenglian740

Special Types of Functions

Undoing by Doing Again

● Some operations invert themselves. For example:
● Flipping a switch twice is the same as not flipping it at all.
● In first-order logic, ¬¬A is equivalent to A.
● In algebra, -(-x) = x.
● In set theory, (A Δ B) Δ B = A. (Yes, really!)

● Operations with these properties are surprisingly
useful in CS theory and come up in a bunch of
contexts.
● Storing compressed approximations of sets (XOR filters).
● Theoretically unbreakable encryption (one-time pads).
● Transmitting a large file to multiple receivers (fountain

codes).

Involutions

● A function f : A → A from a set back to itself is
called an involution if the following first-
order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.
(“Applying f twice is equivalent to not

applying f at all.”)
● Involutions have lots of interesting properties.

Let’s explore them and see what we can find.

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x.
● f : ℤ → ℤ defined as f(x) = -x.
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n is even
n−1 if n is odd

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x.
● f : ℤ → ℤ defined as f(x) = -x.
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n is even
n−1 if n is odd

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x.
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n is even
n−1 if n is odd

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x.
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n is even
n−1 if n is odd

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n is even
n−1 if n is odd

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n is even
n−1 if n is odd

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ → ℝ defined as f(x) = ¹/ₓ. Not a function!
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n is even
n−1 if n is odd

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ → ℝ defined as f(x) = ¹/ₓ. Not a function!
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n is even
n−1 if n is odd

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ → ℝ defined as f(x) = ¹/ₓ. Not a function!
● f : ℕ → ℕ defined as follows: Yep!

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n is even
n−1 if n is odd

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ → ℝ defined as f(x) = ¹/ₓ. Not a function!
● f : ℕ → ℕ defined as follows: Yep!

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n is even
n−1 if n is odd

Involutions, Visually

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.

꩜

+

☞

≈

⬠

꩜

+

☞

≈

⬠

Involutions, Visually

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.

꩜

+

☞

≈

⬠

Proofs on Involutions

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

What does it mean for f to be an involution?

∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader pick some n
∈ ℕ, then argue that f(f(n)) = n.

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

What does it mean for f to be an involution?

∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader pick some n
∈ ℕ, then argue that f(f(n)) = n.

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

What does it mean for f to be an involution?

∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader pick some n
∈ ℤ, then argue that f(f(n)) = n.

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

What does it mean for f to be an involution?

∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader pick some n
∈ ℤ, then argue that f(f(n)) = n.

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

What does it mean for f to be an involution?

∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader pick some n
∈ ℤ, then argue that f(f(n)) = n.

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

What does it mean for f to be an involution?

∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader pick some n
∈ ℤ, then argue that f(f(n)) = n.

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℤ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℤ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℤ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℤ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℤ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℤ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℤ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℤ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℤ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

Theorem: The function f : ℤ → ℤ defined as

is an involution.

Proof: Pick some n ∈ ℤ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we
need to show. ■

f (n) = {n+1 if n is even
n−1 if n is odd

This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,

just as usual.

To prove that
this is true…

To prove that
this is true…

∀x. A
Have the reader pick an

arbitrary x. We then prove A is
true for that choice of x.

Time-Out for Announcements!

Problem Set

● Problem Set 1 solutions are up on the
course website – please take a look at
them as soon as possible.

● TAs are working hard on grading your
assignments. We’re aiming to have those
returned to you by Wednesday morning.

Back to CS103!

Another Class of Functions

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀

Pluto

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀

Pluto

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀

Injective Functions

● A function f : A → B is called injective (or one-to-one) if
the following statement is true about f:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different.”)

● The following first-order definition is equivalent (why?)
and is often useful in proofs.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

● A function with this property is called an injection.

● How does this compare to our second rule for functions?

Injections

● Let 🧑🤝🧑👫👫👫👫be the set of all CS103 students.
Which of the following are injective?

1) f : 👫→ ℕ where f(x) is x’s Stanford ID number.

2) f : 🧑🤝 →👫 🌎, where 🌎is the set of all countries
and f(x) is x’s country of birth.

3) f : 🧑🤝 →👫 💬, where 💬is the set of all given (first)
names, where f(x) is x’s given (first) name.

A function f : A → B is injective if either statement is true:

∀x₁ ∈ A. ∀x₂ ∈ A. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∀x₁ ∈ A. ∀x₂ ∈ A. (f(x₁) = f(x₂) → x₁ = x₂)

Respond at
pollev.com/zhenglian740

Injections

● Let 🧑🤝🧑👫👫👫👫be the set of all CS103 students.
Which of the following are injective?

1) f : 👫→ ℕ where f(x) is x’s Stanford ID number.

2) f : 🧑🤝 →👫 🌎, where 🌎is the set of all countries
and f(x) is x’s country of birth.

3) f : 🧑🤝 →👫 💬, where 💬is the set of all given (first)
names, where f(x) is x’s given (first) name.

A function f : A → B is injective if either statement is true:

∀x₁ ∈ A. ∀x₂ ∈ A. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∀x₁ ∈ A. ∀x₂ ∈ A. (f(x₁) = f(x₂) → x₁ = x₂)

✔

Injections

● Let 🧑🤝🧑👫👫👫👫be the set of all CS103 students.
Which of the following are injective?

1) f : 👫→ ℕ where f(x) is x’s Stanford ID number.

2) f : 🧑🤝 →👫 🌎, where 🌎is the set of all countries
and f(x) is x’s country of birth.

3) f : 🧑🤝 →👫 💬, where 💬is the set of all given (first)
names, where f(x) is x’s given (first) name.

A function f : A → B is injective if either statement is true:

∀x₁ ∈ A. ∀x₂ ∈ A. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∀x₁ ∈ A. ∀x₂ ∈ A. (f(x₁) = f(x₂) → x₁ = x₂)

❌

Injections

● Let 🧑🤝🧑👫👫👫👫be the set of all CS103 students.
Which of the following are injective?

1) f : 👫→ ℕ where f(x) is x’s Stanford ID number.

2) f : 🧑🤝 →👫 🌎, where 🌎is the set of all countries
and f(x) is x’s country of birth.

3) f : 🧑🤝 →👫 💬, where 💬is the set of all given (first)
names, where f(x) is x’s given (first) name.

A function f : A → B is injective if either statement is true:

∀x₁ ∈ A. ∀x₂ ∈ A. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∀x₁ ∈ A. ∀x₂ ∈ A. (f(x₁) = f(x₂) → x₁ = x₂)

❌

Injections

● Let 🧑🤝🧑👫👫👫👫be the set of all CS103 students.
Which of the following are injective?

1) f : 👫→ ℕ where f(x) is x’s Stanford ID number.

2) f : 🧑🤝 →👫 🌎, where 🌎is the set of all countries
and f(x) is x’s country of birth.

3) f : 🧑🤝 →👫 💬, where 💬is the set of all given (first)
names, where f(x) is x’s given (first) name.

A function f : A → B is injective if either statement is true:

∀x₁ ∈ A. ∀x₂ ∈ A. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∀x₁ ∈ A. ∀x₂ ∈ A. (f(x₁) = f(x₂) → x₁ = x₂)

❌

❌

✔

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■

What does it mean for the function f to be injective?

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. (f(n₀) = f(n₁) → n₀ = n₁)

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. (n₀ ≠ n₁ → f(n₀) ≠ f(n₁))

Therefore, we'll pick arbitrary n₀, n₁ ∈ ℕ where f(n₀) =
f(n₁), then prove that n₀ = n₁.

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■

What does it mean for the function f to be injective?

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (f(n₁) = f(n₂) → n₁ = n₂)

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (n₁ ≠ n₂ → f(n₁) ≠ f(n₂))

Therefore, we'll pick arbitrary n₀, n₁ ∈ ℕ where f(n₀) =
f(n₁), then prove that n₀ = n₁.

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■

What does it mean for the function f to be injective?

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (f(n₁) = f(n₂) → n₁ = n₂)

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (n₁ ≠ n₂ → f(n₁) ≠ f(n₂))

Therefore, we'll pick arbitrary n₀, n₁ ∈ ℕ where f(n₀) =
f(n₁), then prove that n₀ = n₁.

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■

What does it mean for the function f to be injective?

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (f(n₁) = f(n₂) → n₁ = n₂)

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (n₁ ≠ n₂ → f(n₁) ≠ f(n₂))

Therefore, we'll pick arbitrary n₁, n₂ ∈ ℕ, assume f(n₁)
= f(n₂), then prove that n₁ = n₂.

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■

What does it mean for the function f to be injective?

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (f(n₁) = f(n₂) → n₁ = n₂)

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (n₁ ≠ n₂ → f(n₁) ≠ f(n₂))

Therefore, we'll pick arbitrary n₁, n₂ ∈ ℕ, assume f(n₁)
= f(n₂), then prove that n₁ = n₂.

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■

What does it mean for the function f to be injective?

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (f(n₁) = f(n₂) → n₁ = n₂)

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (n₁ ≠ n₂ → f(n₁) ≠ f(n₂))

Therefore, we'll pick arbitrary n₁, n₂ ∈ ℕ, assume f(n₁)
= f(n₂), then prove that n₁ = n₂.

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■

What does it mean for the function f to be injective?

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (f(n₁) = f(n₂) → n₁ = n₂)

∀n₁ ∈ ℕ. ∀n₂ ∈ ℕ. (n₁ ≠ n₂ → f(n₁) ≠ f(n₂))

Therefore, we'll pick arbitrary n₁, n₂ ∈ ℕ, assume f(n₁)
= f(n₂), then prove that n₁ = n₂.

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₁, n₂ ∈ ℕ where f(n₁) = f(n₂). We
will prove that n₁ = n₂.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₁, n₂ ∈ ℕ where f(n₁) = f(n₂). We
will prove that n₁ = n₂.

Since f(n₁) = f(n₂), we see that

2n₁ + 7 = 2n₂ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₁, n₂ ∈ ℕ where f(n₁) = f(n₂). We
will prove that n₁ = n₂.

Since f(n₁) = f(n₂), we see that

2n₁ + 7 = 2n₂ + 7.
This in turn means that

2n₁ = 2n₂,

so n₀ = n₁, as required. ■

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₁, n₂ ∈ ℕ where f(n₁) = f(n₂). We
will prove that n₁ = n₂.

Since f(n₁) = f(n₂), we see that

2n₁ + 7 = 2n₂ + 7.
This in turn means that

2n₁ = 2n₂,

so n₁ = n₂, as required. ■

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₁, n₂ ∈ ℕ where f(n₁) = f(n₂). We
will prove that n₁ = n₂.

Since f(n₁) = f(n₂), we see that

2n₁ + 7 = 2n₂ + 7.
This in turn means that

2n₁ = 2n₂,

so n₁ = n₂, as required. ■

Good exercise: Repeat this proof
using the other definition of injectivity!

Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₁, n₂ ∈ ℕ where f(n₁) = f(n₂). We
will prove that n₁ = n₂.

Since f(n₁) = f(n₂), we see that

2n₁ + 7 = 2n₂ + 7.
This in turn means that

2n₁ = 2n₂,

so n₁ = n₂, as required. ■

This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.

To prove that
this is true…

∀x. A
Have the reader pick an

arbitrary x. We then prove A is
true for that choice of x.

To prove that
this is true…

∀x. A

A → B

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Assume A is true, then
prove B is true.

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).

Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).

Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).

 Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

What does it mean for f to be injective?

∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).

 Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

What does it mean for f to be injective?

∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))

What is the negation of this statement?

¬∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).

 Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

What does it mean for f to be injective?

∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))

What is the negation of this statement?

¬∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ¬∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).

 Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

What does it mean for f to be injective?

∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))

What is the negation of this statement?

¬∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ¬∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. ¬(x₁ ≠ x₂ → f(x₁) ≠ f(x₂))

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).

 Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

What does it mean for f to be injective?

∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))

What is the negation of this statement?

¬∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ¬∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. ¬(x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. (x₁ ≠ x₂ ∧ ¬(f(x₁) ≠ f(x₂)))

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₀ and x₁
such that x₀ ≠ x₁, but f(x₀) = f(x₁).

 Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

What does it mean for f to be injective?

∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))

What is the negation of this statement?

¬∀x₁ ∈ ℤ. ∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ¬∀x₂ ∈ ℤ. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. ¬(x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. (x₁ ≠ x₂ ∧ ¬(f(x₁) ≠ f(x₂)))
∃x₁ ∈ ℤ. ∃x₂ ∈ ℤ. (x₁ ≠ x₂ ∧ f(x₁) = f(x₂))

Therefore, we need to find x₁, x₂ ∈ ℤ such that x₁ ≠ x₂, but f(x₁) = f(x₂). Can we do that?

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₁ and x₂
such that x₁ ≠ x₂, but f(x₁) = f(x₂).

Let x₀ = -1 and x₁ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₁ and x₂
such that x₁ ≠ x₂, but f(x₁) = f(x₂).

Let x₁ = -1 and x₂ = +1. Then

f(x₀) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₁ and x₂
such that x₁ ≠ x₂, but f(x₁) = f(x₂).

Let x₁ = -1 and x₂ = +1. Notice that

f(x₁) = f(-1) = (-1)4 = 1

and

f(x₁) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₁ and x₂
such that x₁ ≠ x₂, but f(x₁) = f(x₂).

Let x₁ = -1 and x₂ = +1. Notice that

f(x₁) = f(-1) = (-1)4 = 1

and

f(x₂) = f(1) = 14 = 1,

so f(x₀) = f(x₁) even though x₀ ≠ x₁, as required. ■

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₁ and x₂
such that x₁ ≠ x₂, but f(x₁) = f(x₂).

Let x₁ = -1 and x₂ = +1. Notice that

f(x₁) = f(-1) = (-1)4 = 1

and

f(x₂) = f(1) = 14 = 1,

so f(x₁) = f(x₂) even though x₁ ≠ x₂, as required. ■

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₁ and x₂
such that x₁ ≠ x₂, but f(x₁) = f(x₂).

Let x₁ = -1 and x₂ = +1. Notice that

f(x₁) = f(-1) = (-1)4 = 1

and

f(x₂) = f(1) = 14 = 1,

so f(x₁) = f(x₂) even though x₁ ≠ x₂, as required. ■

Injective Functions

Theorem: Let f : ℤ → ℕ be defined as f(x) = x4. Then f
is not injective.

Proof: We will prove that there exist integers x₁ and x₂
such that x₁ ≠ x₂, but f(x₁) = f(x₂).

Let x₁ = -1 and x₂ = +1. Notice that

f(x₁) = f(-1) = (-1)4 = 1

and

f(x₂) = f(1) = 14 = 1,

so f(x₁) = f(x₂) even though x₁ ≠ x₂, as required. ■

This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.

To prove that
this is true…

∀x. A

A → B

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Assume A is true, then
prove B is true.

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Simplify the negation, then
consult this table on the result.

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

Another Class of Functions

Lassen Peak

Mt. Shasta

Crater Lake

Mt. McLoughlin

Mt. Hood

Mt. St. Helens

Mt. Baker

Mt. Rainier

Oregon

WashingtonWashington

California

Surjective Functions

● A function f : A → B is called surjective (or
onto) if this first-order logic statement is true
about f:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's an
input that produces it.”)

● A function with this property is called a
surjection.

● How does this compare to our first rule of
functions?

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.

So f(x) = y, as required. ■

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.

So f(x) = y, as required. ■

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.

So f(x) = y, as required. ■

What does it mean for f to be surjective?

∀y ∈ ℝ. ∃x ∈ ℝ. f(x) = y

Therefore, we'll choose an arbitrary y ∈ ℝ, then prove
that there is some x ∈ ℝ where f(x) = y.

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.

So f(x) = y, as required. ■

What does it mean for f to be surjective?

∀y ∈ ℝ. ∃x ∈ ℝ. f(x) = y

Therefore, we'll choose an arbitrary y ∈ ℝ, then prove
that there is some x ∈ ℝ where f(x) = y.

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.

So f(x) = y, as required. ■

What does it mean for f to be surjective?

∀y ∈ ℝ. ∃x ∈ ℝ. f(x) = y

Therefore, we'll choose an arbitrary y ∈ ℝ, then prove
that there is some x ∈ ℝ where f(x) = y.

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.

So f(x) = y, as required. ■

What does it mean for f to be surjective?

∀y ∈ ℝ. ∃x ∈ ℝ. f(x) = y

Therefore, we'll choose an arbitrary y ∈ ℝ, then prove
that there is some x ∈ ℝ where f(x) = y.

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = y / 2. Then we see that

f(x) = f(y / 2) = 2y / 2 = y.

So f(x) = y, as required. ■

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = y / 2. Then we see that

f(x) = f(y / 2) = 2y / 2 = y.

So f(x) = y, as required. ■

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = y / 2. Then we see that

f(x) = f(y / 2) = 2y / 2 = y.

So f(x) = y, as required. ■

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = y / 2. Then we see that

f(x) = f(y / 2) = 2y / 2 = y.

So f(x) = y, as required. ■

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = y / 2. Then we see that

f(x) = f(y / 2) = 2y / 2 = y.

So f(x) = y, as required. ■

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = y / 2. Then we see that

f(x) = f(y / 2) = 2y / 2 = y.

So f(x) = y, as required. ■

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = y / 2. Then we see that

f(x) = f(y / 2) = 2y / 2 = y.

So f(x) = y, as required. ■

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = y / 2. Then we see that

f(x) = f(y / 2) = 2y / 2 = y.

So f(x) = y, as required. ■

Surjective Functions

Theorem: Let f : ℝ → ℝ be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = y / 2. Then we see that

f(x) = f(y / 2) = 2y / 2 = y.

So f(x) = y, as required. ■

This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: We will show there is a natural number n such that
g(m) ≠ n for any m ∈ ℕ.

Let n = 137. We must show that g(m) ≠ 137 for any
m ∈ ℕ. To see this, consider some m ∈ ℕ. Then we see
that g(m) = 2m is even, while 137 is odd. Therefore, we
have g(m) ≠ 137, as required. ■

Question: What do we need to do to prove that g is
not surjective? Try taking the definition of

surjectivity and then negating it.

Respond at pollev.com/zhenglian740

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: We will show there is a natural number n such that
g(m) ≠ n for any m ∈ ℕ.

Let n = 137. We must show that g(m) ≠ 137 for any
m ∈ ℕ. To see this, consider some m ∈ ℕ. Then we see
that g(m) = 2m is even, while 137 is odd. Therefore, we
have g(m) ≠ 137, as required. ■

What does it mean for g to be surjective?

∀n ∈ ℕ. ∃m ∈ ℕ. g(m) = n

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: We will show there is a natural number n such that
g(m) ≠ n for any m ∈ ℕ.

Let n = 137. We must show that g(m) ≠ 137 for any
m ∈ ℕ. To see this, consider some m ∈ ℕ. Then we see
that g(m) = 2m is even, while 137 is odd. Therefore, we
have g(m) ≠ 137, as required. ■

What does it mean for g to be surjective?

∀n ∈ ℕ. ∃m ∈ ℕ. g(m) = n

What is the negation of the above statement?

¬∀n ∈ ℕ. ∃m ∈ ℕ. g(m) = n

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: We will show there is a natural number n such that
g(m) ≠ n for any m ∈ ℕ.

Let n = 137. We must show that g(m) ≠ 137 for any
m ∈ ℕ. To see this, consider some m ∈ ℕ. Then we see
that g(m) = 2m is even, while 137 is odd. Therefore, we
have g(m) ≠ 137, as required. ■

What does it mean for g to be surjective?

∀n ∈ ℕ. ∃m ∈ ℕ. g(m) = n

What is the negation of the above statement?

¬∀n ∈ ℕ. ∃m ∈ ℕ. g(m) = n
∃n ∈ ℕ. ¬∃m ∈ ℕ. g(m) = n

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: We will show there is a natural number n such that
g(m) ≠ n for any m ∈ ℕ.

Let n = 137. We must show that g(m) ≠ 137 for any
m ∈ ℕ. To see this, consider some m ∈ ℕ. Then we see
that g(m) = 2m is even, while 137 is odd. Therefore, we
have g(m) ≠ 137, as required. ■

What does it mean for g to be surjective?

∀n ∈ ℕ. ∃m ∈ ℕ. g(m) = n

What is the negation of the above statement?

¬∀n ∈ ℕ. ∃m ∈ ℕ. g(m) = n
∃n ∈ ℕ. ¬∃m ∈ ℕ. g(m) = n
∃n ∈ ℕ. ∀m ∈ ℕ. g(m) ≠ n

Therefore, we need to find a natural number n where, regardless of which
m we pick, we have g(m) ≠ n.

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m ∈ ℕ. We
need to show that g(m) ≠ n.

Notice that g(m) = 2m is even, while 137 is odd.
Therefore, we have g(m) ≠ 137, as required. ■

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m ∈ ℕ. We
need to show that g(m) ≠ n.

Notice that g(m) = 2m is even, while 137 is odd.
Therefore, we have g(m) ≠ 137, as required. ■

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m ∈ ℕ. We
need to show that g(m) ≠ n.

Notice that g(m) = 2m is even, while 137 is odd.
Therefore, we have g(m) ≠ 137, as required. ■Our overall goal is to prove

∃n ∈ ℕ. ∀m ∈ ℕ. g(m) ≠ n.

We just made our choice of n. Therefore, we
need to prove

∀m ∈ ℕ. g(m) ≠ n.

We’ll therefore pick an arbitrary m ∈ ℕ, then
prove that g(m) ≠ n.

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m ∈ ℕ. We
need to show that g(m) ≠ n.

Notice that g(m) = 2m is even, while 137 is odd.
Therefore, we have g(m) ≠ 137, as required. ■

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m ∈ ℕ. We
need to show that g(m) ≠ n.

Notice that g(m) = 2m is even, while 137 is odd.
Therefore, we have g(m) ≠ 137, as required. ■

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m ∈ ℕ. We
need to show that g(m) ≠ n.

Notice that g(m) = 2m is even, while 137 is odd.
Therefore, we have g(m) ≠ 137, as required. ■

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m ∈ ℕ. We
need to show that g(m) ≠ n.

Notice that g(m) = 2m is even, while 137 is odd.
Therefore, we have g(m) ≠ 137, as required. ■

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m ∈ ℕ. We
need to show that g(m) ≠ n.

Notice that g(m) = 2m is even, while 137 is odd.
Therefore, we have g(m) ≠ 137, as required. ■

Surjective Functions

Theorem: Let g : ℕ → ℕ be defined as g(n) = 2n. Then
g(x) is not surjective.

Proof: Let n = 137. Now, pick an arbitrary m ∈ ℕ. We
need to show that g(m) ≠ n.

Notice that g(m) = 2m is even, while 137 is odd.
Therefore, we have g(m) ≠ 137, as required. ■

This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

A Proof About Birds

Theorem: If all birds can fly,
then all herons can fly.

Theorem: If all birds can fly, then all herons
can fly.

 Given the predicates

Bird(b), which says b is a bird;
Heron(h), which says h is a heron; and
CanFly(x), which says x can fly,

 translate the theorem into first-order logic.

Theorem: If all birds can fly, then all herons
can fly.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

 Given the predicates

Bird(b), which says b is a bird;
Heron(h), which says h is a heron; and
CanFly(x), which says x can fly,

 translate the theorem into first-order logic.

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

To prove that
this is true…

∀x. A

∃x. A

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

A → B Assume A is true, then
prove B is true.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Theorem: If all birds can fly, then all herons
can fly.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Which makes more sense as the
next step in this proof?

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Which makes more sense as the
next step in this proof?

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary bird b. Since b is a
bird, b can fly. [and now we’re stuck! we
are interested in herons, but b might not
be one. It could be a hummingbird, for
example!]

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary bird b. Since b is a
bird, b can fly. [and now we’re stuck! we
are interested in herons, but b might not
be one. It could be a hummingbird, for
example!]

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary bird b. Since b is a
bird, b can fly. [and now we’re stuck! we
are interested in herons, but b might not
be one. It could be a hummingbird, for
example!]

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Which makes more sense as the
next step in this proof?

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary citril c. We will show
that c can fly. To do so, note that since c is
a citril we know c is a bird. Therefore, by
our earlier assumption, c can fly. ■

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Which makes more sense as the
next step in this proof?

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary citril c. We will show
that c can fly. To do so, note that since c is
a citril we know c is a bird. Therefore, by
our earlier assumption, c can fly. ■

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Theorem: If all birds can fly, then all herons
 can fly.

Proof: Assume that all birds can fly. We will
 show that all herons can fly.

Consider an arbitrary heron h. We will
show that c can fly. To do so, note that
since c is a citril we know c is a bird.
Therefore, by our earlier assumption, c can
fly. ■

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary heron h. We will
show that h can fly. To do so, note that
since c is a citril we know c is a bird.
Therefore, by our earlier assumption, c can
fly. ■

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Theorem: If all birds can fly, then all herons
 can fly.

Proof: Assume that all birds can fly. We will
 show that all herons can fly.

Consider an arbitrary heron h. We will
show that h can fly. To do so, note that
since h is a heron we know h is a bird.
Therefore, by our earlier assumption, c can
fly. ■

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Theorem: If all birds can fly, then all herons
 can fly.

Proof: Assume that all birds can fly. We will
 show that all herons can fly.

Consider an arbitrary heron h. We will
show that h can fly. To do so, note that
since h is a heron we know h is a bird.
Therefore, by our earlier assumption, h
can fly. ■

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Theorem: If all birds can fly, then all herons
 can fly.

Proof: Assume that all birds can fly. We will
 show that all herons can fly.

Consider an arbitrary heron h. We will
show that h can fly. To do so, note that
since h is a heron we know h is a bird.
Therefore, by our earlier assumption, h
can fly. ■

All birds
can fly

All herons
can fly

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Theorem: If all birds can fly, then all herons
 can fly.

Proof: Assume that all birds can fly. We will
 show that all herons can fly.

Consider an arbitrary heron h. We will
show that h can fly. To do so, note that
since h is a heron we know h is a bird.
Therefore, by our earlier assumption, h
can fly. ■

We never introduce a
variable b.

We introduce a variable h
almost immediately.

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

We never introduce a
variable b.

We introduce a variable h
almost immediately.

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● In the context of a proof, you will need to
assume some statements and prove others.
● Here, we assumed all birds can fly.
● Here, we proved all herons can fly.

● Statements behave differently based on
whether you’re assuming or proving them.

We never introduce a
variable b.

We introduce a variable h
almost immediately.

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● To prove the universally-quantified statement

∀x. P(x)

we introduce a new variable x representing some
arbitrarily-chosen value.

● Then, we prove that P(x) is true for that variable x.
● That’s why we introduced a variable h in this proof

representing a heron.

We never introduce a
variable b.

We introduce a variable h
almost immediately.

(∀b. (Bird(b) → CanFly(b))) → (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● If we assume the statement

∀x. P(x)

we do not introduce a variable x.
● Rather, if we find a relevant value z somewhere else in

the proof, we can conclude that P(z) is true.
● That’s why we didn’t introduce a variable b in our

proof, and why we concluded that h, our heron, can fly.

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

To prove that
this is true…

If you assume
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

To prove that
this is true…

If you assume
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Initially, do nothing. Once you
find a z through other means,

you can state it has property A.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

To prove that
this is true…

If you assume
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Initially, do nothing. Once you
find a z through other means,

you can state it has property A.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Introduce a variable
x into your proof that

has property A.

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Prove A. Then prove B. Assume A. Then assume B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

To prove that
this is true…

If you assume
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Initially, do nothing. Once you
find a z through other means,

you can state it has property A.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Introduce a variable
x into your proof that

has property A.

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Prove A. Then prove B. Assume A. Then assume B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Prove A → B and B → A. Assume A → B and B → A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.

Recap from Today

● A function takes in an element of a
domain and maps it to an element of a
codomain. Functions must be
deterministic.

● Definitions are often given in first-order
logic, and the structure of a first-order logic
statement dictates the structure of a proof.

● Involutions, injections, and surjections
are specific classes of functions that have
nice properties.

Next Time

● Connecting Function Types
● Involutions, injections, and surjections are

related to one another. How?
● Function Composition

● Sequencing functions together.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195

